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CHAPTER 12

Wireless in Linux 

Chapter 11 deals with Layer 4 protocols, which enable us to communicate with userspace. This chapter deals with 
the wireless stack in the Linux kernel. I describe the Linux wireless stack (mac80211 subsystem) and discuss some 
implementation details of important mechanisms in it, such as packet aggregation and block acknowledgement, 
used in IEEE 802.11n, and power save mode. Becoming familiar with the 802.11 MAC header is essential in order 
to understand the wireless subsystem implementation. The 802.11 MAC header, its members, and their usage 
are described in depth in this chapter. I also discuss some common wireless topologies, like infrastructure BSS, 
independent BSS, and Mesh networking.

Mac80211 Subsystem
At the end of the 1990s, there were discussions in IEEE regarding a protocol for wireless local area networks (WLANS). 
The original version of the IEEE 802.11 spec for WLANS was released in 1997 and revised in 1999. In the following 
years, some extensions were added, formally termed 802.11 amendments. These extensions can be divided into 
PHY (Physical) layer extensions, MAC (Medium Access Control) layer extensions, Regulatory extensions, and others. 
PHY layer extensions are, for example, 802.11b from 1999, 802.11a (also from 1999), and 802.11g from 2003. MAC 
layer extensions are, for example, 802.11e for QoS and 802.11s for Mesh networking. The “Mesh Networking” section 
of this chapter deals with the Linux kernel implementation of the IEEE802.11s amendment. The IEEE802.11 spec 
was revised, and in 2007 a second version of 1,232 pages was released. In 2012, a spec of 2,793 pages was released, 
available from http://standards.ieee.org/findstds/standard/802.11-2012.html. I refer to this spec as IEEE 
802.11-2012 in this chapter. Following is a partial list of important 802.11 amendments: 

•฀ IEEE 802.11d: International (country-to-country) roaming extensions (2001).

•฀ IEEE 802.11e: Enhancements: QoS, including packet bursting (2005).

•฀ IEEE 802.11h: Spectrum Managed 802.11a for European compatibility (2004).

•฀ IEEE 802.11i: Enhanced security (2004).

•฀ IEEE 802.11j: Extensions for Japan (2004).

•฀ IEEE 802.11k: Radio resource measurement enhancements (2008).

•฀ IEEE 802.11n: Higher throughput improvements using MIMO (multiple input, multiple output 
antennas) (2009).

•฀ IEEE 802.11p: WAVE: Wireless Access for the Vehicular Environment (such as ambulances 
and passenger cars). It has some peculiarities such as not using the BSS concept and narrower 
(5/10 MHz) channels. Note that IEEE 802.11p isn’t supported in Linux as of this writing.

•฀ IEEE 802.11v: Wireless network management.

http://standards.ieee.org/findstds/standard/802.11-2012.html
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•฀ IEEE 802.11w: Protected Management Frames.

•฀ IEEE 802.11y: 3650–3700 MHz operation in the U.S. (2008)

•฀ IEEE 802.11z: Extensions to Direct Link Setup (DLS) (Aug 2007–Dec 2011).

It was only in about 2001, about four years after the IEEE 802.11 first spec was approved, that laptops became 
very popular; many of these laptops were sold with wireless network interfaces. Today every laptop includes WiFi as 
standard equipment. It was important to the Linux community at that time to provide Linux drivers to these wireless 
network interfaces and to provide a Linux network wireless stack, in order to stay competitive with other OSes (such 
as Windows, Mac OS, and others). Less effort has been done regarding architecture and design. “They just want their 
hardware to work,” as Jeff Garzik, the Linux Kernel Wireless maintainer at that time, put it. When the first wireless 
drivers for Linux were developed, there was no general wireless API. As a result, there were many cases of duplication 
of code between drivers, when developers implemented their drivers from scratch. Some drivers were based on 
FullMAC, which means that most of the management layer (MLME) is managed in hardware. In the years since, a 
new 802.11 wireless stack called mac80211 was developed. It was integrated into the Linux kernel in July 2007, for the 
2.6.22 Linux kernel. The mac80211 stack is based on the d80211 stack, which is an open source, GPL-licensed stack by 
a company named Devicescape.

I cannot delve into the details of the PHY layer, because that subject is very wide and deserves a book of its own. 
However, I must note that there are many differences between 802.11 and 802.3 wired Ethernet. Here are two major 
differences:

Ethernet works with CSMA/CD, whereas 802.11 works with CSMA/CA. CSMA/CA stands for •฀
carrier sense multiple access/collision avoidance, and CSMA/CD stands for carrier sense 
multiple access/collision detection. The difference, as you might guess, is the collision detection. 
With Ethernet, a station starts to transmit when the medium is idle; if a collision is detected 
during transmission, it stops, and a random backoff period starts. Wireless stations cannot detect 
collisions while transmitting, whereas wired stations can. With CSMA/CA, the wireless station 
waits for a free medium and only then transmits the frame. In case of a collision, the station 
will not notice it, but because no acknowledgment frame should be sent for this packet, it is 
retransmitted after a timeout has elapsed if an acknowledgment is not received.

Wireless traffic is sensitive to interferences. As a result, the 802.11 spec requires that every •฀
frame, except for broadcast and multicast, be acknowledged when it is received. Packets that 
are not acknowledged in time should be retransmitted. Note that since IEEE 802.11e, there is 
a mode which does not require acknowledgement—the QoSNoAck mode—but it’s rarely used 
in practice.

The 802.11 MAC Header 
Each MAC frame consists of a MAC header, a frame body of variable length, and an FCS (Frame Check Sequence) of 
32 bit CRC. Figure 12-1 shows the 802.11 header.

Figure 12-1. IEEE 802.11 header. Note that all members are not always used, as this section will shortly explain
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The 802.11 header is represented in mac80211 by the ieee80211_hdr structure: 
 
struct ieee80211_hdr {
        __le16 frame_control;
        __le16 duration_id;
        u8 addr1[6];
        u8 addr2[6];
        u8 addr3[6];
        __le16 seq_ctrl;
        u8 addr4[6];
} __packed;
 
(include/linux/ieee80211.h)

In contrast to an Ethernet header (struct ethhdr), which contains only three fields (source MAC address, 
destination MAC address, and Ethertype), the 802.11 header contains up to six addresses and some other fields. For 
a typical data frame, though, only three addresses are used (for example, Access Point or AP/client communication). 
With an ACK frame, only the receiver address is used. Note that Figure 12-1 shows only four addresses, but when 
working with Mesh networking, a Mesh extension header with two additional addresses is used.

I now turn to a description of the 802.11 header fields, starting with the first field in the 802.11 header, called the 
frame control. This is an important field, and in many cases its contents determine the meaning of other fields of  
the 802.11 MAC header (especially addresses).

The Frame Control
The frame control length is 16 bits. Figure 12-2 shows its fields and the size of each field.

Figure 12-2. Frame control fields

The following is a description of the frame control members:

•฀ Protocol version: The version of the MAC 802.11 we use. Currently there is only one version 
of MAC, so this field is always 0.

•฀ Type: There are three types of packets in 802.11—management, control, and data:

Management packets (IEEE80211_FTYPE_MGMT) are for management actions like •฀
association, authentication, scanning, and more.

Control packets (IEEE80211_FTYPE_CTL) usually have some relevance to data packets; •฀
for example, a PS-Poll packet is for retrieving packets from an AP buffer. Another example: 
a station that wants to transmit first sends a control packet named RTS (request to send); 
if the medium is free, the destination station will send back a control packet named CTS 
(clear to send).

Data packets (IEEE80211_FTYPE_DATA) are the raw data packets. Null packets are a special •฀
case of raw packets, carrying no data and used mostly for power management control 
purposes. I discuss null packets in the “Power Save Mode” section later in this chapter.
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•฀ Subtype: For all the aforementioned three types of packets (management, control, and data), 
there is a sub-type field which identifies the character of the packet used. For example:

A value of 0100 for the sub-type field in a management frame denotes that the packet is a •฀
Probe Request (IEEE80211_STYPE_PROBE_REQ) management packet, which is used in a 
scan operation.

A value of 1011 for the sub-type field in a control packet denotes that this is a request to •฀
send (IEEE80211_STYPE_RTS) control packet. A value of 0100 for the sub-type field of 
a data packet denotes that this is a null data (IEEE80211_STYPE_NULLFUNC) packet, 
which is used for power management control.

A value of 1000 (IEEE80211_STYPE_QOS_DATA) for the sub-type of a data packet means •฀
that this is a QoS data packet; this sub-type was added by the IEEE802.11e amendment, 
which dealt with QoS enhancements.

•฀ ToDS: When this bit is set, it means the packet is for the distribution system.

•฀ FromDS: When this bit is set, it means the packet is from the distribution system.

•฀ More Frag: When you use fragmentation, this bit is set to 1.

•฀ Retry: When a packet is retransmitted, this bit is set to 1. A typical case of retransmission 
is when a packet that was sent did not receive an acknowledgment in time. The 
acknowledgments are usually sent by the firmware of the wireless driver.

•฀ Pwr Mgmt: When the power management bit is set, it means that the station will enter power 
save mode. I discuss power save mode in the “Power Save Mode” section later in this chapter.

•฀ More Data: When an AP sends packets that it buffered for a sleeping station, it sets the More 
Data bit to 1 when the buffer is not empty. Thus the station knows that there are more packets 
it should retrieve. When the buffer has been emptied, this bit is set to 0.

•฀ Protected Frame: This bit is set to 1 when the frame body is encrypted; only data frames and 
authentication frames can be encrypted.

•฀ Order: With the MAC service called strict ordering, the order of frames is important. When this 
service is in use, the order bit is set to 1. It is rarely used.

Note ■  The action frame (IEEE80211_STYPE_ACTION) was introduced with the 802.11h amendment, which dealt with 

spectrum and transmit power management. However, because of a lack of space for management packets sub-types,  

action frames are used also in various newer amendments to the standard—for example, HT action frames in 802.11n.

The Other 802.11 MAC Header Members
The following describes the other members of the mac802.11 header, after the frame control:

•฀ Duration/ID: The duration holds values for the Network Allocation Vector (NAV) in 
microseconds, and it consists of 15 bits of the Duration/ID field. The sixteenth field is 0.  
When working in power save mode, it is the AID (association id) of a station for PS-Poll frames 
(see 8.2.4.2 (a) in IEEE 802.11-2012). The Network Allocation Vector (NAV) is a virtual carrier 
sensing mechanism. I do not delve into NAV internals because that is beyond the scope of  
this chapter.
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•฀ Sequence Control: This is a 2-byte field specifying the sequence control. In 802.11, it is possible 
that a packet will be received more than once, most commonly when an acknowledgment is not 
received for some reason. The sequence control field consists of a fragment number (4 bits) and 
a sequence number (12 bits). The sequence number is generated by the transmitting station, in 
the ieee80211_tx_h_sequence() method. In the case of a duplicate frame in a retransmission, 
it is dropped, and a counter of the dropped duplicate frames (dot11FrameDuplicateCount) is 
incremented by 1; this is done in the ieee80211_rx_h_check() method. The Sequence Control 
field is not present in control packets.

•฀ Address1 – Address4: There are four addresses, but you don’t always use all of them. Address 
1 is the Receive Address (RA), and is used in all packets. Address 2 is the Transmit Address 
(TA), and it exists in all packets except ACK and CTS packets. Address 3 is used only for 
management and data packets. Address 4 is used when ToDS and FromDS bits of the frame 
control are set; this happens when operating in a Wireless Distribution System.

•฀ QoS Control: The QoS control field was added by the 802.11e amendment and is only 
present in QoS data packets. Because it is not part of the original 802.11 spec, it is not part 
of the original mac80211 implementation, so it is not a member of the IEEE802.11 header 
(ieee80211_hdr struct). In fact, it was added at the end of the IEEE802.11 header and 
can be accessed by the ieee80211_get_qos_ctl() method. The QoS control field includes 
the tid (Traffic Identification), the ACK Policy, and a field called A-MSDU present, which 
tells whether an A-MSDU is present. I discuss A-MSDU later in this chapter, in the “High 
Throughput (ieee802.11n)” section.

HT Control Field: HT (high throughput) control field was added by the 802.11n amendment •฀
(see 7.1.3.5(a) of the 802.11n-2009 spec).

This section covered the 802.11 MAC header, with a description of its members and their use. Becoming familiar 
with the 802.11 MAC header is essential for understanding the mac802.11 stack.

Network Topologies 
There are two popular network topologies in 802.11 wireless networks. The first topology I discuss is Infrastructure 
BSS mode, which is the most popular. You encounter Infrastructure BSS wireless networks in home wireless networks 
and offices. Later I discuss the IBSS (Ad Hoc) mode. Note that IBSS is not Infrastructure BSS; IBSS is Independent BSS, 
which is an ad hoc network, discussed later in this section.

Infrastructure BSS
When working in Infrastructure BSS mode, there is a central device, called an Access Point (AP), and some client 
stations. Together they form a BSS (Basic Service Set). These client stations must first perform association and 
authentication against the AP to be able to transmit packets via the AP. On many occasions, client stations perform 
scanning prior to authentication and association, in order to get details about the AP. Association is exclusive: a client 
can be associated with only one AP in a given moment. When a client associates with an AP successfully, it gets an 
AID (association id), which is a unique number (to this BSS) in the range 1–2007. An AP is in fact a wireless network 
device with some hardware additions (like Ethernet ports, LEDs, a button to reset to manufacturer defaults, and 
more). A management daemon runs on the AP device. An example of such software is the hostapd daemon. This 
software handles some of the management tasks of the MLME layer, such as authentication and association requests. 
It achieves this by registering itself to receive the relevant management frames via nl80211. The hostapd project is an 
open source project which enables several wireless network devices to operate as an AP.
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Clients can communicate with other clients (or to stations in a different network which is bridged to the AP) 
by sending packets to the AP, which are relayed by the AP to their final destination. To cover a large area, you can 
deploy multiple APs and connect them by wire. This type of deployment is called Extended Service Set (ESS). Within 
ESS deployment, there are two or more BSSs. Multicasts and broadcasts sent in one BSS, which may arrive on a 
nearby BSS, are rejected in the nearby BSS stations (the bssid in the 802.11 header does not match). Within such a 
deployment, each AP usually uses a different channel to minimize interference.

IBSS, or Ad Hoc Mode 
IBSS network is often formed without preplanning, for only as long as the WLAN is needed. An IBSS network is also 
called ad hoc network. Creating an IBSS is a simple procedure. You can set an IBSS by running from a command line 
this iw command (note that the 2412 parameter is for using channel 1):
 
iw wlan0 ibss join AdHocNetworkName 2412
 

Or when using the iwconfig tool, with these two commands:
 
iwconfig wlan0 mode ad-hoc
iwconfig wlan0 essid AdHocNetworkrName
 

This triggers IBSS creation by calling the ieee80211_sta_create_ibss() method (net/mac80211/ibss.c). Then 
the ssid (AdHocNetworkName in this case) has to be distributed manually (or otherwise) to everyone who wants to 
connect to the ad hoc network. When working with IBSS, you do not have an AP. The bssid of the IBSS is a random 
48-bit address (based on calling the get_random_bytes() method). Power management in Ad Hoc mode is a bit 
more complex than power management in Infrastructure BSS; it uses Announcement Traffic Indication Map (ATIM) 
messages. ATIM is not supported by mac802.11 and is not discussed in this chapter.

The next section describes power save mode, which is one of the most important mechanisms of the mac80211 
network stack.

Power Save Mode
Apart from relaying packets, there is another important function for the AP: buffering packets for client stations 
that enter power save mode. Clients are usually battery-powered devices. From time to time, the wireless network 
interface enters power save mode.

Entering Power Save Mode
When a client station enters power save mode, it informs the AP about it by sending usually a null data packet. In fact, 
technically speaking, it does not have to be a null data packet; it is enough that it is a packet with PM=1 (PM is the 
Power Management flag in the frame control). An AP that gets such a null packet starts keeping unicast packets which 
are destined to that station in a special buffer called ps_tx_buf; there is such a buffer for every station. This buffer is in 
fact a linked list of packets, and it can hold up to 128 packets (STA_MAX_TX_BUFFER) for each station. If the buffer is 
filled, it will start discarding the packets that were received first (FIFO). Apart from this, there is a single buffer called 
bc_buf, for multicast and broadcast packets (in the 802.11 stack, multicast packets should be received and processed 
by all the stations in the same BSS). The bc_buf buffer can also hold up to 128 packets (AP_MAX_BC_BUFFER). When 
a wireless network interface is in power save mode, it cannot receive or send packets.
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Exiting Power Save Mode
From time to time, an associated station is awakened by itself (by some timer); it then checks for special management 
packets, called beacons, which the AP sends periodically. Typically, an AP sends 10 beacons in a second; on most APs, 
this is a configurable parameter. These beacons contain data in information elements, which constitute the data in 
the management packet. The station that awoke checks a specific information element called TIM (Traffic Indication 
Map), by calling the ieee80211_check_tim() method (include/linux/ieee80211.h). The TIM is an array of 2008 
entries. Because the TIM size is 251 bytes (2008 bits), you are allowed to send a partial virtual bitmap, which is smaller 
in size. If the entry in the TIM for that station is set, it means that the AP saved unicast packets for this station, so that 
station should empty the buffer of packets that the AP kept for it. The station starts sending null packets (or, more 
rarely, special control packets, called PS-Poll packets) to retrieve these buffered packets from the AP. Usually after the 
buffer has been emptied, the station goes to sleep (however, this is not mandatory according to the spec).

Handling the Multicast/Broadcast Buffer
The AP buffers multicast and broadcast packets whenever at least one station is in sleeping mode. The AID for 
multicast/broadcast stations is 0; so, in such a case, you set TIM[0] to true. The Delivery Team (DTIM), which is a 
special type of TIM, is sent not in every beacon, but once for a predefined number of beacon intervals (the DTIM 
period). After a DTIM is sent, the AP sends its buffered broadcast and multicast packets. You retrieve packets from the 
multicast/broadcast buffer (bc_buf) by calling the ieee80211_get_buffered_bc() method. In Figure 12-3 you can see 
an AP that contains a linked list of stations (sta_info objects), each of them with a unicast buffer (ps_tx_buf) of its 
own, and a single bc_buf buffer, for storing multicast and broadcast packets.

The AP is implemented as an ieee80211_if_ap object in mac80211. Each such ieee80211_if_ap object has 
a member called ps (an instance of ps_data), where power save data is stored. One of the members of the ps_data 
structure is the broadcast/multicast buffer, bc_buf.

Figure 12-3. Buffering packets in an AP
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In Figure 12-4 you can see a flow of PS-Poll packets that a client sends in order to retrieve packets from the AP 
unicast buffer, ps_tx_buf. Note that the AP sends all the packets with the IEEE80211_FCTL_MOREDATA flag, except 
for the last one. Thus, the client knows that it should keep on sending PS-Poll packets until the buffer is emptied. For 
the sake of simplicity, the ACK traffic in this diagram is not included, but it should be mentioned here that the packets 
should be acknowledged.

Note ■  Power management and power save mode are two different topics. Power management deals with handling 

machines that perform suspend (whether it is suspend to RAM or suspend to disk, aka hibernate, or in some cases, both 

suspend to RAM and suspend to disk, aka hybrid suspend), and is handled in net/mac80211/pm.c. In the drivers, power 

management is handled by the resume/suspend methods. Power save mode, on the other hand, deals with handling  

stations that enter sleep mode and wake up; it has nothing to do with suspend and hibernation.

This section described power save mode and the buffering mechanism. The next section discusses the 
management layer and the different tasks it handles.

Figure 12-4. Sending PSPOLL packets from a client to retrieve packets from the ps_tx_buf buffer within an AP
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The Management Layer (MLME) 
There are three components in the 802.11 management architecture:

The Physical Layer Management Entity (PLME).•฀

The System Management Entity (SME).•฀

The MAC Layer Management Entity (MLME).•฀

Scanning
There are two types of scanning: passive scanning and active scanning. Passive scanning means to listen passively 
for beacons, without transmitting any packets for scanning. When performing passive scanning (the flags of the scan 
channel contain IEEE80211_CHAN_PASSIVE_SCAN), the station moves from channel to channel, trying to receive 
beacons. Passive scanning is needed in some higher 802.11a frequency bands, because you’re not allowed to transmit 
anything at all until you’ve heard an AP beacon. With active scanning, each station sends a Probe Request packet; this 
is a management packet, with sub-type Probe Request (IEEE80211_STYPE_PROBE_REQ). Also with active scanning, 
the station moves from channel to channel, sending a Probe Request management packet on each channel (by calling 
the ieee80211_send_probe_req() method). This is done by calling the ieee80211_request_scan() method. Changing 
channels is done via a call to the ieee80211_hw_config() method, passing IEEE80211_CONF_CHANGE_CHANNEL 
as a parameter. Note that there is a one-to-one correspondence between a channel in which a station operates and the 
frequency in which it operates; the ieee80211_channel_to_frequency() method (net/wireless/util.c) returns the 
frequency in which a station operates, given its channel.

Authentication
Authentication is done by calling the ieee80211_send_auth() method (net/mac80211/util.c). It sends a 
management frame with authentication sub-type (IEEE80211_STYPE_AUTH). There are many authentications types; 
the original IEEE802.11 spec talked about only two forms: open-system authentication and shared key authentication. 
The only mandatory authentication method required by the IEEE802.11 spec is the open-system authentication 
(WLAN_AUTH_OPEN). This is a very simple authentication algorithm—in fact, it is a null authentication algorithm. 
Any client that requests authentication with this algorithm will become authenticated. An example of another option 
for an authentication algorithm is the shared key authentication (WLAN_AUTH_SHARED_KEY). In shared key 
authentication, the station should authenticate using a Wired Equivalent Privacy (WEP) key.

Association
In order to associate, a station sends a management frame with association sub-type (IEEE80211_STYPE_ASSOC_REQ).  
Association is done by calling the ieee80211_send_assoc() method (net/mac80211/mlme.c).

Reassociation
When a station moves between APs within an ESS, it is said to be roaming. The roaming station sends a reassociation 
request to a new AP by sending a management frame with reassociation sub-type (IEEE80211_STYPE_REASSOC_REQ).  
Reassociation is done by calling the ieee80211_send_assoc() method; there are many similarities between 
association and reassociation, so this method handles both. In addition, with reassociation, the AP returns an AID 
(association id) to the client in case of success.
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This section talked about the management layer (MLME) and some of the operations it supports, like scanning, 
authentication, association, and more. In the next section I describe some mac80211 implementation details that are 
important in order to understand the wireless stack.

Mac80211 Implementation
Mac80211 has an API for interfacing with the low level device drivers. The implementation of mac80211 is complex 
and full of many small details. I cannot give an exhaustive description of the mac80211 API and implementation; 
I do discuss some important points that can give a good starting point to those who want to delve into the code. 
A fundamental structure of mac80211 API is the ieee80211_hw struct (include/net/mac80211.h); it represents 
hardware information. The priv (pointer to a private area) pointer of ieee80211_hw is of an opaque type (void *). 
Most wireless device drivers define a private structure for this private area, like lbtf_private (Marvell wireless driver) 
or iwl_priv (iwlwifi from Intel). Memory allocation and initialziation for the ieee80211_hw struct is done by the 
ieee80211_alloc_hw() method. Here are some methods related to the ieee80211_hw struct:

•฀ int ieee80211_register_hw(struct ieee80211_hw *hw): Called by wireless drivers for 
registering the specified ieee80211_hw object.

•฀ void ieee80211_unregister_hw(struct ieee80211_hw *hw): Unregisters the specified 
802.11 hardware device.

•฀ struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, const struct 
ieee80211_ops *ops): Allocates an ieee80211_hw object and initializes it.

•฀ ieee80211_rx_irqsafe(): This method is for receiving a packet. It is implemented in  
net/mac80211/rx.c and called from low level wireless drivers.

The ieee80211_ops object, which is passed to the ieee80211_alloc_hw() method as you saw earlier, consists of 
pointers to callbacks to the driver. Not all of these callbacks must be implemented by the drivers. The following is a 
short description of these methods:

•฀ tx(): The transmit handler called for each transmitted packet. It usually returns  
NETDEV_TX_OK (except for under certain limited conditions).

•฀ start(): Activates the hardware device and is called before the first hardware device is 
enabled. It turns on frame reception.

•฀ stop(): Turns off frame reception and usually turns off the hardware.

•฀ add_interface(): Called when a network device attached to the hardware is enabled.

•฀ remove_interface(): Informs a driver that the interface is going down.

•฀ config(): Handles configuration requests, such as hardware channel configuration.

•฀ configure_filter(): Configures the device’s Rx filter.

Figure 12-5 shows a block diagram of the architecture of the Linux wireless subsystem. You can see that the 
interface between wireless device drivers layer and the mac80211 layer is the ieee80211_ops object and its callbacks.
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Another important structure is the sta_info struct (net/mac80211/sta_info.h), which represents a station. 
Among the members of this structure are various statistics counters, various flags, debugfs entries, the ps_tx_buf 
array for buffering unicast packets, and more. Stations are organized in a hash table (sta_hash) and a list (sta_list). 
The important methods related to sta_info are as follows:

•฀ int sta_info_insert(struct sta_info *sta): Adds a station.

•฀ int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr): 
Removes a station (by calling the __sta_info_destroy() method).

•฀ struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 
*addr): Fetches a station; the address of the station (it’s bssid) is passed as a parameter.

Figure 12-5. Linux wireless architecture
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Rx Path
The ieee80211_rx() function (net/mac80211/rx.c) is the main receive handler. The status of the received packet 
(ieee80211_rx_status) is passed by the wireless driver to mac80211, embedded in the SKB control buffer (cb). The 
IEEE80211_SKB_RXCB() macro is used to fetch this status. The flag field of the Rx status specifies, for example, 
whether the FCS check failed on the packet (RX_FLAG_FAILED_FCS_CRC). The various values possible for the flag 
field are presented in Table 12-1 in the “Quick Reference” section of this chapter. In the ieee80211_rx() method, 
the ieee80211_rx_monitor() is invoked to remove the FCS (checksum) and remove a radiotap header (struct 
ieee80211_radiotap_header) which might have been added if the wireless interface is in monitor mode. (You use 
a network interface in monitor mode in case of sniffing, for example. Not all the wireless network interfaces support 
monitor mode, see the section “Wireless Modes” later in this chapter.)

If you work with HT (802.11n), you perform AMPDU reordering if needed by invoking the  
ieee80211_rx_reorder_ampdu() method. Then you call the __ieee80211_rx_handle_packet() method, which 
eventually calls the ieee80211_invoke_rx_handlers() method. Then you call, one by one, various receive handlers 
(using a macro named CALL_RXH). The order of calling these handlers is important. Each handler checks whether 
it should handle the packet or not. If it decides it should not handle the packet, then you return RX_CONTINUE and 
proceed to the next handler. If it decides it should handle the packet, then you return RX_QUEUED.

There are certain cases when a handler decides to drop a packet; in these cases, it returns RX_DROP_MONITOR 
or RX_DROP_UNUSABLE. For example, if you get a PS-Poll packet, and the type of the receiver shows that it is not 
an AP, you return RX_DROP_UNUSABLE. Another example: for a management frame, if the length of the SKB is 
less than the minimum (24), the packet is discarded and RX_DROP_MONITOR is returned. Or if the packet is not a 
management packet, then also the packet is discarded and RX_DROP_MONITOR is returned. Here is the code snippet 
from the ieee80211_rx_h_mgmt_check() method that implements this:
 
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
{
        struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
        struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
 
        . . .
        if (rx->skb->len < 24)
                return RX_DROP_MONITOR;
 
        if (!ieee80211_is_mgmt(mgmt->frame_control))
                return RX_DROP_MONITOR;
               .  .  .
}
 
(net/mac80211/rx.c)

Tx Path
The ieee80211_tx() method is the main handler for transmission (net/mac80211/tx.c). First it invokes the  
__ieee80211_tx_prepare() method, which performs some checks and sets certain flags. Then it calls the  
invoke_tx_handlers() method, which calls, one by one, various transmit handlers (using a macro named CALL_TXH).  
If a transmit handler finds that it should do nothing with the packet, it returns TX_CONTINUE and you proceed to the 
next handler. If it decides it should handle a certain packet, it returns TX_QUEUED, and if it decides it should drop the 
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packet, it returns TX_DROP. The invoke_tx_handlers() method returns 0 upon success. Let’s take a short look in the 
implementation of the ieee80211_tx() method:
 
static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata,
                         struct sk_buff *skb, bool txpending,
                         enum ieee80211_band band)
{
        struct ieee80211_local *local = sdata->local;
        struct ieee80211_tx_data tx;
        ieee80211_tx_result res_prepare;
        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
        bool result = true;
        int led_len;
 

Perform a sanity check, drop the SKB if its length is less than 10:
 
if (unlikely(skb->len < 10)) {
        dev_kfree_skb(skb);
        return true;
}
 
/* initialises tx */
led_len = skb->len;
 
res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
 
if (unlikely(res_prepare == TX_DROP)) {
        ieee80211_free_txskb(&local->hw, skb);
        return true;
} else if (unlikely(res_prepare == TX_QUEUED)) {
        return true;
}
 

Invoke the Tx handlers; if everything is fine, continue with invoking the __ieee80211_tx() method:
 
        . . .
        if (!invoke_tx_handlers(&tx))
                result = __ieee80211_tx(local, &tx.skbs, led_len,
                                        tx.sta, txpending);
 
        return result;
}
 
(net/mac80211/tx.c)

Fragmentation
Fragmentation in 802.11 is done only for unicast packets. Each station is assigned a fragmentation threshold size (in 
bytes). Packets that are bigger than this threshold should be fragmented. You can lower the number of collisions by 
reducing the fragmentation threshold size, making the packets smaller. You can inspect the fragmentation threshold 
of a station by running iwconfig or by inspecting the corresponding debugfs entry (see the “Mac80211 debugfs” 
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section later in this chapter). You can set the fragmentation threshold with the iwconfig command; thus, for example, 
you can set the fragmentation threshold to 512 bytes by:
 
iwconfig wlan0 frag 512
 

Each fragment is acknowledged. The more fragment field in the fragment header is set to 1 if there are more 
fragments. Each fragment has a fragment number (a subfield in the sequence control field of the frame control). 
Reassembling of the fragments on the receiver is done according to the fragments numbers. Fragmentation in 
the transmitter side is done by the ieee80211_tx_h_fragment() method (net/mac80211/tx.c). Reassembly on 
the receiver side is done by the ieee80211_rx_h_defragment() method (net/mac80211/rx.c). Fragmentation is 
incompatible with aggregation (used for higher throughput), and given the high rates and thus short (in time) packets 
it is very rarely used nowadays.

Mac80211 debugfs
debugfs is a technique that enables exporting debugging information to userspace. It creates entries under the sysfs 
filesystem. debugfs is a virtual filesystem devoted to debugging information. For mac80211, handling mac80211 
debugfs is mostly in net/mac80211/debugfs.c. After mounting debugfs, various mac802.11 statistics and information 
entries can be inspected. Mounting debugfs is performed like this:
 
mount -t debugfs none_debugs /sys/kernel/debug 

Note ■  CONFIG_DEBUG_FS must be set when building the kernel to be able to mount and work with debugfs.

For example, let’s say your phy is phy0; the following is a discussion about some of the entries under  
/sys/kernel/debug/ieee80211/phy0:

•฀ total_ps_buffered: This is the total number of packets (unicast and multicasts/broadcasts) 
which the AP buffered for the station. The total_ps_buffered counter is incremented by 
ieee80211_tx_h_unicast_ps_buf() for unicasts, and by ieee80211_tx_h_multicast_ps_buf()  
for multicasts or broadcasts.

Under •฀ /sys/kernel/debug/ieee80211/phy0/statistics, you have various statistical 
information—for example:

•฀ frame_duplicate_count denotes the number of duplicate frames. This debugfs 
entry represents the duplicate frames counter, dot11FrameDuplicateCount, which is 
incremented by the ieee80211_rx_h_check() method.

•฀ transmitted_frame_count denotes the number of transmitted packets. This debugfs 
entry represents dot11TransmittedFrameCount; it is incremented by the ieee80211_tx_
status() method.

•฀ retry_count denotes number of retransmissions. This debugfs entry represents 
dot11RetryCount; it is incremented also by the ieee80211_tx_status() method.

•฀ fragmentation_threshold: The size of the fragmentation threshold, in bytes. See the 
“Fragmentation” section earlier.
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Under •฀ /sys/kernel/debug/ieee80211/phy0/netdev:wlan0, you have some entries that give 
information about the interface; for example, if the interface is in station mode, you will have 
aid for the association id of the station, assoc_tries for the number of times the stations tried 
to perform association, bssid is for the bssid of the station, and so on.

Every station uses a rate control algorithm. Its name is exported by the following •฀ debugfs 
entry: /sys/kernel/debug/ieee80211/phy1/rc/name.

Wireless Modes
You can set a wireless network interface to operate in several modes, depending on its intended use and the  
topology of the network in which it is deployed. In some cases, you can set the mode with the iwconfig command, 
and in some cases you must use a tool like hostapd for this. Note that not all devices support all modes. See  
www.linuxwireless.org/en/users/Drivers for a list of Linux drivers that support different modes. Alternatively, 
you can also check to which values the interface_modes field of the wiphy member (in the ieee80211_hw object) is 
initialized in the driver code. The interface_modes are initialized to one or more modes of the nl80211_iftype enum, 
like NL80211_IFTYPE_STATION or NL80211_IFTYPE_ADHOC (see: include/uapi/linux/nl80211.h). The following 
is a detailed description of these wireless modes:

•฀ AP mode: In this mode, the device acts as an AP (NL80211_IFTYPE_AP). The AP maintains 
and manages a list of associated stations. The network (BSS) name is the MAC address of the 
AP (bssid). There is also a human-readable name for the BSS, called the SSID.

•฀ Station infrastructure mode: A managed station in an infrastructure mode  
(NL80211_IFTYPE_STATION).

•฀ Monitor mode: All incoming packets are handed unfiltered in monitor mode  
(NL80211_IFTYPE_MONITOR). This is useful for sniffing. It is usually possible to transmit 
packets in monitor mode. This is termed packet injection; these packets are marked with a 
special flag (IEEE80211_TX_CTL_INJECTED).

•฀ Ad Hoc (IBSS) mode: A station in an ad hoc (IBSS) network (NL80211_IFTYPE_ADHOC). With 
Ad Hoc mode, there is no AP device in the network.

•฀ Wireless Distribution System (WDS) mode: A station in a WDS network (NL80211_IFTYPE_WDS).

•฀ Mesh mode: A station in a Mesh network (NL80211_IFTYPE_MESH_POINT), discussed in the 
“Mesh Networking (802.11s)” section later in this chapter.

The next section discusses the ieee802.11n technology, which provides higher performance, and how it is 
implemented in the Linux wireless stack. You will learn also about block acknowledgment and packet aggregation in 
802.11n and how these techniques are used to improve performance.

High Throughput (ieee802.11n)
A little after 802.11g was approved, a new task group was created in IEEE, called High Throughput Task Group (TGn). 
IEEE 802.11n became a final spec at the end of 2009. The IEEE 802.11n protocol allows coexistence with legacy 
devices. There were some vendors who already sold 802.11n pre-standard devices based on the 802.11n draft before 
the official approval. Broadcom set a precedent for releasing wireless interfaces based on a draft. In 2003, it released 
a chipset of a wireless device based on a draft of 802.11g. Following this precedent, as early as 2005 some vendors 
released products based on the 802.11n draft. For example, Intel Santa Rose processor has Intel Next-Gen Wireless-N 
(Intel WiFI Link 5000 series), supports 802.11n. Other Intel wireless network interfaces, like 4965AGN, also supported 
802.11n. Other vendors, including Atheros and Ralink, also released 802.11n draft-based wireless devices. The WiFi 

http://www.linuxwireless.org/en/users/Drivers
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alliance started certification of 802.11n draft devices in June 2007. A long list of vendors released products which 
comply with Wi-Fi CERTIFIED 802.11n draft 2.0.

802.11n can operate on the 2.4 GHz and/or 5 GHz bands, whereas 802.11g and 802.11b operate only in the 
2.4 GHz radio frequency band, and 802.11a operates only in the 5 GHz radio frequency band. The 802.11n MIMO 
(Multiple Input, Multiple Output) technology increases the range and reliability of traffic over the wireless coverage 
area. MIMO technology uses multiple transmitter and receiver antennas on both APs and clients, to allow for 
simultaneous data streams. The result is increased range and increased throughput. With 802.11n you can achieve  
a theoretical PHY rate of up to 600 Mbps (actual throughput will be much lower due to medium access rules,  
and so on).

802.11n added many improvements for the 802.11 MAC layer. The most well known is packet aggregation, 
which concatenates multiple packets of application data into a single transmission frame. A block acknowledgment 
(BA) mechanism was added (discussed in the next section). BA permits multiple packets to be acknowledged by a 
single packet instead of sending an ACK for each received packet. The wait time between two consecutive packets 
is cut. This enables sending multiple data packets with a fixed overhead cost of a single packet. The BA protocol was 
introduced in the 802.11e amendment from 2005.

Packet Aggregation
There are two types of packet aggregation:

•฀ AMSDU: Aggregated Mac Service Data Unit

•฀ AMPDU: Aggregated Mac Protocol Data Unit

Note that the AMSDU is only supported on Rx, and not on Tx, and is wholly independent from the Block Ack 
mechanism described in this section; so the discussion in this section only pertains to AMPDU.

There are two sides to a Block Ack session: originator and recipient. Each block session has a different Traffic 
Identifier (TID). The originator starts the block acknowledgement session by calling the ieee80211_start_tx_ba_session()  
method. This is done typically from a rate control algorithm method in the driver. For example, with the ath9k  
wireless driver, the ath_tx_status() function (drivers/net/wireless/ath/ath9k/rc.c), which is a rate control 
callback, invokes the ieee80211_start_tx_ba_session() method. The ieee80211_start_tx_ba_session()  
method sets the state to HT_ADDBA_REQUESTED_MSK and sends an ADDBA request packet, by invoking the 
ieee80211_send_addba_request() method. The call to ieee80211_send_addba_request() passes parameters for  
the session, such as the wanted reorder buffer size and the TID of the session.

The reorder buffer size is limited to 64K (see the definition of ieee80211_max_ampdu_length_exp in  
include/linux/ieee80211.h). These parameters are part of the capability member (capab) in the struct addba_req. 
The response to the ADDBA request should be received within 1 Hz, which is one second in x86_64 machines 
(ADDBA_RESP_INTERVAL). If you do not get a response in time, the sta_addba_resp_timer_expired() method will 
stop the BA session by calling the ___ieee80211_stop_tx_ba_session() method. When the other side (the recipient) 
receives the ADDBA request, it first sends an ACK (every packet in ieee802.11 should be acknowledged, as mentioned 
before). Then it processes the ADDBA request by calling the ieee80211_process_addba_request() method; if 
everything is okay, it sets the aggregation state of this machine to operational (HT_AGG_STATE_OPERATIONAL) and 
sends an ADDBA response by calling the ieee80211_send_addba_resp() method. It also stops the response timer 
(the timer which has as its callback the sta_addba_resp_timer_expired() method) by calling del_timer_sync() 
on this timer. After a session is started, a data block containing multiple MPDU packets is sent. Consequently, the 
originator sends a Block Ack Request (BAR) packet by calling the ieee80211_send_bar() method.
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Block Ack Request (BAR)

The BAR is a control packet with Block Ack Request sub-type (IEEE80211_STYPE_BACK_REQ). The BAR packet 
includes the SSN (start sequence number), which is the sequence number of the oldest MSDU in the block that 
should be acknowledged. The recipient receives the BAR and reorders the ampdu buffer accordingly, if needed.  
Figure 12-6 shows a BAR request.

When sending a BAR, the type subfield in the frame control is control (IEEE80211_FTYPE_CTL), and the subtype 
subfield is Block Ack request (IEEE80211_STYPE_BACK_REQ). The BAR is represented by the ieee80211_bar struct:
 
struct ieee80211_bar {
        __le16 frame_control;
        __le16 duration;
        __u8 ra[6];
        __u8 ta[6];
        __le16 control;
        __le16 start_seq_num;
} __packed;
 
(include/linux/ieee80211.h)

The RA is the recipient address, and the TA is the transmitter (originator) address. The control field of the BAR 
request includes the TID.

Block Ack

There are two types of Block Ack: Immediate Block Ack and Delayed Block Ack. Figure 12-7 shows Immediate Block Ack.

Figure 12-6. BAR request
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The difference between Immediate Block Ack and Delayed Block Ack is that with Delayed Block Ack, the BAR 
request itself is answered first with an ACK, and then after some delay, with a BA (Block Ack). When using Delayed 
Block Ack, there is more time to process the BAR, and this is sometime needed when working with software based 
processing. Using Immediate Block Ack is better in terms of performance. The BA itself is also acknowledged. When 
the originator has no more data to send, it can terminate the Block Ack session by calling the ieee80211_send_delba()  
method; this function sends a DELBA request packet to the other side. The DELBA request is handled by the 
ieee80211_process_delba() method. The DELBA message, which causes a Block Ack session tear down, can be 
sent either from the originator or recipient of the Block Ack session. The AMPDU maximum length is 65535 octets. 
Note that packet aggregation is only implemented for APs and managed stations; packet aggregation for IBSS is not 
supported by the spec.

Mesh Networking (802.11s) 
The IEEE 802.11s protocol started as a Study Group of IEEE in September 2003, and became a Task Group named 
TGs in 2004. In 2006, 2 proposals, out of 15 (the “SEEMesh” and “Wi-Mesh” proposals) were merged into one, which 
resulted in draft D0.01. 802.11s was ratified in July 2011 and is now part of IEEE 802.11-2012. Mesh networks allow 
the creation of an 802.11 Basic Service Set over fully and partially connected Mesh topology. This can be seen as an 
improvement over 802.11 ad hoc network, which requires a fully-connected Mesh topology. Figures 12-8 and 12-9 
illustrate the difference between the two types of Mesh topologies.

Figure 12-7. Immediate Block Ack
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In a partially-connected Mesh, nodes are connected to only some of the other nodes, but not to all of them. This 
topology is much more common in wireless Mesh networks. Figure 12-9 shows an example of a partial mesh.

Figure 12-8. Full Mesh 

Figure 12-9. Partial Mesh
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Wireless mesh networks forward data packets over multiple wireless hops. Each mesh node acts as a relay  
point/router for the other mesh nodes. In kernel 2.6.26 (2008), support for the draft of wireless mesh networking 
(802.11s) was added to the network wireless stack, thanks to the open80211s project. The open80211s project goal was 
to create the first open implementation of 802.11s. The project got some sponsorship from the OLPC project and from 
some commercial companies. Luis Carlos Cobo and Javier Cardona and other developers from Cozybit developed the 
Linux mac80211 Mesh code.

Now that you have learned a bit about Mesh networking and Mesh network topologies, you are ready for the next 
section, which covers the HWMP routing protocol for Mesh networks.

HWMP Protocol
The 802.11s protocol defines a default routing protocol called HWMP (Hybrid Wireless Mesh Protocol). The HWMP 
protocol works with Layer 2 and deals with MAC addresses, as opposed to the IPV4 routing protocol, for example, 
which works with Layer 3 and deals with IP addresses. HWMP routing is based on two types of routing (hence it is 
called hybrid). The first is on-demand routing, and the second is proactive routing. The main difference between the 
two mechanisms has to do with the time in which path establishment is initiated (path is the name used for route in 
Layer 2). In on-demand routing, a path to a destination is established by the protocol only after the protocol stack has 
received frames for such a destination. This minimizes the amount of management traffic required to maintain the 
Mesh network at the expense of introducing additional latency in data traffic. Proactive routing can be used if a Mesh 
node is known to be the recipient of a lot of mesh traffic. In that case, the node will periodically announce itself over 
the Mesh network and trigger path establishments to itself from all the Mesh nodes in the network. Both on-demand 
and proactive routing are implemented in the Linux kernel. There are four types of routing messages:

•฀ PREQ (Path Request): This type of message is sent as a broadcast when you look for some 
destination that you still do not have a route to. This PREQ message is propagated in the 
Mesh network until it gets to its destination. A lookup is performed on each station until the 
final destination is reached (by calling the mesh_path_lookup() method). If the lookup fails, 
the PREQ is forwarded (as a broadcast) to the other stations. The PREQ message is sent in a 
management packet; its sub-type is action (IEEE80211_STYPE_ACTION). It is handled by the 
hwmp_preq_frame_process() method.

•฀ PREP (Path Reply): This type is a unicast packet that is sent as a reply to a PREQ message. This 
packet is sent in the reverse path. The PREP message is also sent in a management packet 
and its subtype is also the action sub-type (IEEE80211_STYPE_ACTION). It is handled by the 
hwmp_prep_frame_process() method. Both the PREQ and the PREP messages are sent by the 
mesh_path_sel_frame_tx() method.

•฀ PERR (Path Error): If there is some failure on the way, a PERR is sent. A PERR message is 
handled by the mesh_path_error_tx() method.

•฀ RANN (Root Announcement): The Root Mesh point periodically broadcasts this frame. Mesh 
points that receive it send a unicast RREQ to the root via the MP from which it received the 
RANN. In response, the Root Mesh will send a PREP response to each PREQ.

Note ■  The route takes into consideration a radio-aware metric (airtime metric). The airtime metric is calculated by the 

airtime_link_metric_get() method (based on rate and other hardware parameters). Mesh points continuously monitor 

their links and update metric values with neighbours.
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The station that sent the PREQ may try to send packets to the final destination while still not knowing the route to 
that destination; these packets are kept in a buffer of SKBs named frame_queue, which is a member of the mesh_path 
object (net/mac80211/mesh.h). In such a case, when a PREP finally arrives, the pending packets of this buffer are sent 
to the final destination (by calling the mesh_path_tx_pending() method). The maximum number of frames buffered 
per destination for unresolved destinations is 10 (MESH_FRAME_QUEUE_LEN). The advantages of Mesh networking 
are as follows:

Rapid deployment•฀

Minimal configuration, inexpensive•฀

Easy to deploy in hard-to-wire environments•฀

Connectivity while nodes are in motion•฀

Higher reliability: no single point of failure and the ability to heal itself•฀

The disadvantages are as follows:

Many broadcasts limit network performance.•฀

Not all wireless drivers support Mesh mode at the moment.•฀

Setting Up a Mesh Network
There are two sets of userspace tools for managing wireless devices and networks in Linux: one is the older Wireless 
Tools for Linux, an open source project based on IOCTLs. Examples of command line utilities of the wireless tools are 
iwconfig, iwlist, ifrename, and more. The newer tool is iw, based on generic netlink sockets (described in Chapter 2).  
However, there are some tasks that only the newer tool, iw, can perform. You can set a wireless device to work in Mesh 
mode only with the iw command.

Example: setting a wireless network interface (wlan0) to work in Mesh mode can be done like this:
 
iw wlan0 set type mesh 

Note ■  Setting a wireless network interface (wlan0) to work in mesh mode can be done also like this: 

iw wlan0 set type mp

mp stands for Mesh Point. See “Adding interfaces with iw” in http://wireless.kernel.org/en/users/Documentation/iw

Joining the mesh is done by: iw wlan0 mesh join "my-mesh-ID"
You can display statistics about a station by the following:

•฀ iw wlan0 station dump

•฀ iw wlan0 mpath dump

I should mention here also the authsae and the wpa_supplicant tools, which can be used to create secure Mesh 
networks and do not depend upon iw.

http://wireless.kernel.org/en/users/Documentation/iw
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Linux Wireless Development Process
Most development is done using the git distributed version control system, as with many other Linux subsystems. 
There are three main git trees; the bleeding edge is the wireless-testing tree. There are also the regular wireless tree 
and the wireless-next tree. The following are the links to the git repositories for the development trees: 

wireless-testing development tree:•฀

git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-testing.git

wireless development tree:•฀

git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-2.6.git

wireless-next development tree:•฀

git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-next-2.6.git

Patches are sent and discussed in the wireless mailing list: linux-wireless@vger.kernel.org. From time to time 
a pull request is sent to the kernel networking mailing list, netdev, mentioned in Chapter 1.

As mentioned in the “Mac80211 subsystem” section, which dealt with the mac80211 subsystem, some wireless 
network interface vendors maintain their own development trees for their Linux drivers on their own sites. In some 
cases, the code they are using does not use the mac80211 API; for example, some Ralink and Realtek wireless device 
drivers. Since January 2006, the maintainer of the Linux wireless subsystem is John W. Linville, who replaced Jeff 
Garzik. The maintainer of mac80211 is Johannes Berg, from October 2007. There were some annual Linux wireless 
summits; the first took place in 2006 in Beaverton (OR). A very detailed wiki page is here: http://wireless.kernel.org/.  
This web site includes a lot of important documentation. For example, a table specifies the modes each wireless 
network interface supports. There is a lot of information in this wiki page regarding many wireless device drivers, 
hardware, and various tools (such as CRDA, the central regulatory domain agent, hostapd, iw, and more).

Summary
A lot of development has been done in Linux wireless stack in recent years. The most significant change is the integration 
of the mac80211 stack and porting wireless drivers to use the mac80211 API, making the code much more organized. The 
situation is much better than before; many more wireless devices are supported in Linux. Mesh networking got a boost 
recently thanks to the open802.11s project. It was integrated in the Linux 2.6.26 kernel. The future will probably see more 
drivers that support the new standard, IEEE802.11ac, a 5 GHz-only technology that can reach maximum throughputs 
well above a gigabit per second, and more drivers that support P2P.

Chapter 13 discusses InfiniBand and RDMA in the Linux kernel. The “Quick Reference” section covers the top 
methods that are related to the topics discussed in this chapter, ordered by their context.

Quick Reference
I conclude this chapter with a short list of important methods of the Linux wireless subsystem, some of which  
are mentioned in this chapter. Table 12-1 shows the various possible values for the flag member of the  
ieee80211_rx_status object.

Methods
This section discusses the methods.

http://mailto:linux-wireless@vger.kernel.org/
http://wireless.kernel.org/
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void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn);

This method sends a block acknowledgment request.

int ieee80211_start_tx_ba_session(struct ieee80211_sta *pubsta, u16 tid,  

u16 timeout);

This method starts a  Block Ack session by calling the wireless driver ampdu_action() callback, passing  
IEEE80211_AMPDU_TX_START. As a result, the driver will later call the ieee80211_start_tx_ba_cb() callback or  
the ieee80211_start_tx_ba_cb_irqsafe() callback, which will start the aggregation session.

int ieee80211_stop_tx_ba_session(struct ieee80211_sta *pubsta, u16 tid);

This method stops a  Block Ack session by calling the wireless driver ampdu_action() function, passing  
IEEE80211_AMPDU_TX_STOP. The driver must later call the ieee80211_stop_tx_ba_cb() callback or the  
ieee80211_stop_tx_ba_cb_irqsafe() callback.

static void ieee80211_send_addba_request(struct ieee80211_sub_if_data *sdata, 

const u8 *da, u16 tid, u8 dialog_token, u16 start_seq_num, u16 agg_size, u16 

timeout);

This method sends an ADDBA message. An ADDBA message is a management action message.

void ieee80211_process_addba_request(struct ieee80211_local *local,  

struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len);

This method handles an ADDBA message.

static void ieee80211_send_addba_resp(struct ieee80211_sub_if_data *sdata,  

u8 *da, u16 tid, u8 dialog_token, u16 status, u16 policy, u16 buf_size, u16 timeout);

This method sends an ADDBA response. An ADDBA response is a management packet, with subtype of action 
(IEEE80211_STYPE_ACTION).

static ieee80211_rx_result debug_noinline  

ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx);

This method handles AMSDU aggregation (Rx path).

void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata,  

struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len);

This method handles a DELBA message.
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void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, const u8 *da, 

u16 tid, u16 initiator, u16 reason_code);

This method sends a DELBA message.

void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);

This method receives a packet. The ieee80211_rx_irqsafe() method can be called in hardware interrupt context.

static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,  

struct sk_buff_head *frames);

This method handles the A-MPDU reorder buffer.

static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data 

*sdata, struct tid_ampdu_rx *tid_agg_rx, struct sk_buff_head *frames);

This method handles the A-MPDU reorder buffer.

static ieee80211_rx_result debug_noinline  

ieee80211_rx_h_check(struct ieee80211_rx_data *rx);

This method drops duplicate frames of a retransmission and increment dot11FrameDuplicateCount and the station 
num_duplicates counter.

void ieee80211_send_nullfunc(struct ieee80211_local *local,  

struct ieee80211_sub_if_data *sdata, int powersave);

This method sends a special NULL data frame.

void ieee80211_send_pspoll(struct ieee80211_local *local, struct  

ieee80211_sub_if_data *sdata);

This method sends a PS-Poll control packet to an AP.

static void ieee80211_send_assoc(struct ieee80211_sub_if_data *sdata);

This method performs association or reassociation by sending a management packet with association sub-type of 
IEEE80211_STYPE_ASSOC_REQ or IEEE80211_STYPE_REASSOC_REQ, respectively. The ieee80211_send_assoc() 
method is invoked from the ieee80211_do_assoc() method.



CHAPTER 12 ■ WIRELESS IN LINUX 

369

void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, u16 transaction, 

u16 auth_alg, u16 status, const u8 *extra, size_t extra_len, const u8 *da, const u8 

*bssid, const u8 *key, u8 key_len, u8 key_idx, u32 tx_flags);

This method performs authentication by sending a management packet with authentication sub-type  
(IEEE80211_STYPE_AUTH).

static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,  

u8 tim_len, u16 aid);

This method checks whether the tim[aid] is set; the aid is passed as a parameter, and it represents the association id 
of the station.

int ieee80211_request_scan(struct ieee80211_sub_if_data *sdata,  

struct cfg80211_scan_request *req);

This method starts active scanning.

void mesh_path_tx_pending(struct mesh_path *mpath);

This method send packets from the frame_queue.

struct mesh_path *mesh_path_lookup(struct ieee80211_sub_if_data *sdata,  

const u8 *dst);

This method performs a lookup in a Mesh path table (routing table) of a Mesh point. The second parameter to the 
mesh_path_lookup() method is the hardware address of the destination. It returns NULL if there is no entry in the 
table, otherwise it returns a pointer to the mesh path structure which was found.

static void ieee80211_sta_create_ibss(struct ieee80211_sub_if_data *sdata);

This method creates an IBSS.

int ieee80211_hw_config(struct ieee80211_local *local, u32 changed);

This method is called for various configurations by the driver; in most cases, it delegates the call to the driver 
config() method, if implemented. The second parameter specifies which action to take (for instance,  
IEEE80211_CONF_CHANGE_CHANNEL to change channel, or IEEE80211_CONF_CHANGE_PS to change the  
power save mode of the driver).
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struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, const struct 

ieee80211_ops *ops);

This method allocates a new 802.11 hardware device.

int ieee80211_register_hw(struct ieee80211_hw *hw);

This method registers a 802.11 hardware device.

void ieee80211_unregister_hw(struct ieee80211_hw *hw);

This method unregisters a 802.11 hardware device and frees its allocated resources.

int sta_info_insert(struct sta_info *sta);

This method adds a station to the hash table of stations and to the list of stations.

int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr);

This method removes a station and frees its resources.

struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 *addr);

This method returns a pointer to a station by performing a lookup in the hash table of stations.

void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst, 

const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 ratemask, bool 

directed, u32 tx_flags, struct ieee80211_channel *channel, bool scan);

This method sends a probe request management packet.

static inline void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct 

sk_buff *skb);

This method transmits an SKB.

int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band);

This method returns the frequency in which a station operates, given its channel. There is a one-to-one 
correspondence between a channel and a frequency.
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static int mesh_path_sel_frame_tx(enum mpath_frame_type action, u8 flags, const 

u8 *orig_addr, __le32 orig_sn, u8 target_flags, const u8 *target, __le32 target_sn, 

const u8 *da, u8 hop_count, u8 ttl, __le32 lifetime, __le32 metric, __le32 preq_id, 

struct ieee80211_sub_if_data *sdata);

This method sends a PREQ or PREP management packet.

static void hwmp_preq_frame_process(struct ieee80211_sub_if_data *sdata, 

struct ieee80211_mgmt *mgmt, const u8 *preq_elem, u32 metric);

This method handles a PREQ message.

struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb);

This method returns the ieee80211_rx_status object associated with the control buffer (cb), which is associated with 
the specified SKB.

static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, 

bool txpending, enum ieee80211_band band);

This method is the main handler for transmission.

Table
Table 12-1 shows the bits of the flag member (a 32-bit field) of the ieee80211_rx_status structure and the 
corresponding Linux symbol.

Table 12-1. Rx Flags: Various Possible Values for the Flag Field of the ieee80211_rx_status Object

Linux Symbol Bit Description

RX_FLAG_MMIC_ERROR 0 Michael MIC error was reported on this frame.

RX_FLAG_DECRYPTED 1 This frame was decrypted in hardware.

RX_FLAG_MMIC_STRIPPED 3 The Michael MIC is stripped off this frame, verification 
has been done by the hardware.

RX_FLAG_IV_STRIPPED 4 The IV/ICV are stripped from this frame.

RX_FLAG_FAILED_FCS_CRC 5 The FCS check failed on the frame.

RX_FLAG_FAILED_PLCP_CRC 6 The PCLP check failed on the frame.

RX_FLAG_MACTIME_START 7 The timestamp passed in the RX status is valid and 
contains the time the first symbol of the MPDU was 
received.

(continued)
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Linux Symbol Bit Description

RX_FLAG_SHORTPRE 8 Short preamble was used for this frame.

RX_FLAG_HT 9 HT MCS was used and rate_idx is MCS index

RX_FLAG_40MHZ 10 HT40 (40 MHz) was used.

RX_FLAG_SHORT_GI 11 Short guard interval was used.

RX_FLAG_NO_SIGNAL_VAL 12 The signal strength value is not present.

RX_FLAG_HT_GF 13 This frame was received in a HT-greenfield transmission

RX_FLAG_AMPDU_DETAILS 14 A-MPDU details are known, in particular the reference 
number must be populated and be a distinct number for 
each A-MPDU.

RX_FLAG_AMPDU_REPORT_ZEROLEN 15 Driver reports 0-length subframes.

RX_FLAG_AMPDU_IS_ZEROLEN 16 This is a zero-length subframe, for monitoring  
purposes only.

RX_FLAG_AMPDU_LAST_KNOWN 17 Last subframe is known, should be set on all subframes of 
a single A-MPDU.

RX_FLAG_AMPDU_IS_LAST 18 This subframe is the last subframe of the A-MPDU.

RX_FLAG_AMPDU_DELIM_CRC_ERROR 19 A delimiter CRC error has been detected on this 
subframe.

RX_FLAG_AMPDU_DELIM_CRC_KNOWN 20 The delimiter CRC field is known (the CRC
is stored in the ampdu_delimiter_crc field of the 
ieee80211_rx_status)

RX_FLAG_MACTIME_END 21 The timestamp passed in the RX status is valid and 
contains the time the last symbol of the MPDU (including
FCS) was received.

RX_FLAG_VHT 22 VHT MCS was used and rate_index is MCS index

RX_FLAG_80MHZ 23 80 MHz was used

RX_FLAG_80P80MHZ 24 80+80 MHz was used

RX_FLAG_160MHZ 25 160 MHz was used

Table 12-1.  (continued)


